

DELHI PUBLIC SCHOOL FIROZABAD

(UNDER THE AEGIS OF DELHI PUBLIC SCHOOL SOCIETY EAST OF KAILASH NEWDELHI)

(A SENIOR SECONDARY SCHOOL)

Class – 11 th	Subject - Physics
Name:	Topic: Thermodynamics
Roll no:	Worksheet Dated: 18.01.22

- 1. Two identical samples of gas are expanded so that the volume is increased to twice the initial volume. However, sample number 1 is expanded isothermally while sample number 2 is expanded adiabatically. In which sample is the pressure greater? Why?
- 2. A gas is suddenly compressed to 1/3 of its original volume. Calculate the rise in temperature, the original temperature being 300 K and $\gamma = 1.5$.
- 3. A perfect engine utilizes an ideal gas. The source temperature is 500 K and the sink temperature is 375 K. If the engine takes 600 Kcal per cycle from the source, compute:
 - a. The efficiency of the engine
 - b. Work done per cycle
 - c. Heat rejected to the sink per cycle.
- 4. A refrigerator has, to transfer an average of 263 J of heat per second from temperature 10°C to 25°C. Calculate the average power consumed assuming ideal reversible cycle and no other losses.
- 5. What is the coefficient of performance (β) of a Carnot refrigerator working between 30°C and 0°C?
- 6. A certain volume of dry air at NTP is allowed to expand 4 times its original volume under
 - a. isothermal conditions
 - b. adiabatic conditions.
 - c. Calculate the final pressure and temperature in each case $\gamma = 1.4$.
- 7. In a refrigerator, heat from inside at 277 K is transferred to a room at 300 K. How many joules of heat will be delivered to the room for each joule of electric energy consumed ideally?
