DELHI PUBLIC SCHOOL FIROZABAD
 (UNDER THE AEGIS OF DELHI PUBLIC SCHOOL SOCIETY EAST OF KAILASH NEWDELHI) (A SENIOR SECONDARY SCHOOL)

Class $-11^{\text {th }}$
Name: \qquad
Roll no: \qquad

Subject - Physics

Topic: Thermodynamics
Worksheet Dated: 18.01.22

1. Two identical samples of gas are expanded so that the volume is increased to twice the initial volume. However, sample number 1 is expanded isothermally while sample number 2 is expanded adiabatically. In which sample is the pressure greater? Why?
2. A gas is suddenly compressed to $1 / 3$ of its original volume. Calculate the rise in temperature, the original temperature being 300 K and $\gamma=1.5$.
3. A perfect engine utilizes an ideal gas. The source temperature is 500 K and the sink temperature is 375 K . If the engine takes 600 Kcal per cycle from the source, compute:
a. The efficiency of the engine
b. Work done per cycle
c. Heat rejected to the sink per cycle.
4. A refrigerator has, to transfer an average of 263 J of heat per second from temperature $10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Calculate the average power consumed assuming ideal reversible cycle and no other losses.
5. What is the coefficient of performance (β) of a Carnot refrigerator working between $30^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$?
6. A certain volume of dry air at NTP is allowed to expand 4 times its original volume under
a. isothermal conditions
b. adiabatic conditions.
c. Calculate the final pressure and temperature in each case $\gamma=1.4$.
7. In a refrigerator, heat from inside at 277 K is transferred to a room at 300 K . How many joules of heat will be delivered to the room for each joule of electric energy consumed ideally?
