(UNDER THE AEGIS OF DELHI PUBLIC SCHOOL SOCIETY EAST OF KAILASH NEWDELHI) (A SENIOR SECONDARY SCHOOL)

Class - $11^{\text {th }}$
Name: \qquad
Roll no: \qquad
Date: \qquad

Subject - Physics

Topic: Kinetic theory
Worksheet Dated: 14.01.22

1. What does gas constant R signify? What is its value?
2. Calculate the value of the universal gas constant (R) at NTP.
3. Calculate r.m.s. the velocity of hydrogen at N.T.P. Given the density of hydrogen $=0.09$ $\mathrm{kg} \mathrm{m}{ }^{3}$.
4. Calculate the temperature at which r.m.s. the velocity of the gas molecule is double its value at $27^{\circ} \mathrm{C}$, the pressure of the gas remaining the same.
5. Calculate the diameter of a molecule if $\mathrm{n}=2.79 \times 10^{25}$ molecules per m^{3} and mean free path $=2.2 \times 10^{-8} \mathrm{~m}$.
6. A balloon contains $500 \mathrm{~m}^{3}$ of He at $27^{\circ} \mathrm{C}$ and 1 atm pressure. Find the volume of the helium at $3^{\circ} \mathrm{C}$ and 0.5 atm pressure?
7. At what temperature will the average velocity of O_{2} molecules be sufficient so as to escape from earth? $\mathrm{V}_{\mathrm{e}}=11.0 \mathrm{~km} \mathrm{~s}^{-1}$ and mass of one molecule of O_{2} is $5.34 \times 10^{-26} \mathrm{~kg}, \mathrm{k}$ $=1.38 \times 10^{-23} \mathrm{JK}^{-1}$.
8. If the density of nitrogen at S.T.P. be $0.00125 \mathrm{~g} \mathrm{~cm}^{3}$. What is the velocity of its molecules? $\mathrm{g}=980 \mathrm{~cm}$
